REPORT OF THE 5 DAYS TRAINING SESSION
FOR EXPERTS OF THE ACCOBAMS AREA

ACCOBAMS TRAINING COURSES ON PHOTO ID AND
DATABASES FOR EXPERTS

In collaboration with SPA/RAC, IUCN Med, MedPAN and Lebanese CNRS

Byblos, Lebanon, 1st - 5th October 2018
I- BACKGROUND

The Agreement on the Conservation of Cetaceans of the Black Sea, Mediterranean Sea and Contiguous Atlantic Area (ACCOBAMS), concluded under the auspices of the Convention of Migratory Species of Wild Animals (UNEP-CMS), has entered into force in 2001 and is now binding on 24 States (Albania, Algeria, Bulgaria, Croatia, Cyprus, Egypt, France, Georgia, Greece, Italy, Lebanon, Libya, Malta, , Monaco, Montenegro, Morocco, Portugal, Romania, Slovenia, Spain, Syria, Tunisia, Turkey, Ukraine). The general purpose of ACCOBAMS is to achieve and maintain a favorable conservation status for cetaceans, by improving current knowledge of these animal. To this end, Parties shall co-operate in order to develop common tools for the collection and dissemination of information about cetaceans and to organize training courses and education programmes.

The 2017-2019 ACCOBAMS Work Programme (Resolution 6.5 adopted by Parties during MOP6 in November 2016), included the organization by the ACCOBAMS Permanent Secretariat of training on the use of photo-id and the promotion of the use of catalogues or web-based databases of photo-IDs.

II- OBJECTIVE

The 5 days training session for experts of the ACCOBAMS area, in particular from ACCOBAMS Partners, has been organized, thanks to a voluntary contribution from Italy. It was organized in collaboration with SPA/RAC, IUCN Med, MedPAN and Lebanese CNRS, from 1st to 5th October 2018 in Lebanon. It was aimed at reinforcing capacity on (i) the use of photo-id, (ii) the use of databases for experts relevant to ACCOBAMS which may seem complex for non-trained experts, and (iii) the creation of catalogues with relevant data for cetacean conservation.

The main objective was to go towards standardization of the methods / tools used to share and valorize the data collected (i.e. through scientific publications) on cetaceans in order to optimize the efforts undertaken by all stakeholders involved in cetacean conservation and to improve the status of cetacean.

Around 40 participants from Mediterranean and Black Sea participated to the training. Final list of participants appears in Annex 1 of the report.

The final Agenda appears in Annex 2 of the report.

Trainers explained the participants how to use GPS and Qgis softwares, though exercises (Annex 3) and with a support guide (Annex 4) in order to be more comfortable with:

- GPS data extraction
- GPS data processing
- Building of a database
- The use of Qgis, more particularly:
 - Switch from Excel to Qgis
 - Import the data under Qgis
• Transform Points to lines (Transects creations and Calculating the length of the transects)
• General tools of Qgis
• Create a layer (CCH)
• Create an attribute table
• Create polygones
• Create a map

III- CONCLUSION
An evaluation form was filled by each trainee at the end of the training. All feedbacks are positive. It seems that the proposed format was very adapted to the needs from experts.
ANNEX 1 – LIST OF PARTICIPANTS

ALI Malek
Tishreen University
Basic Sciences Department, Faculty of Agriculture, Tishreen University, Lattakia, SYRIA
Tel: + 963933990370
Email: malekfaresali@gmail.com

AMENGUAL Pep
Chief of Service of research of the Spanish National Park’s Network
C/ Hernani 57 fifth floor, Madrid 28020 SPAIN
Email: PAmengual@oapn.es

ATZORI Fabrizio
Marine Protected Area “Capo Carbonara”
Via roma 60 09049 Villasimius ITALY – Sardinia
Tel : +393483424917
Email: direzione@ampcapocarbonara.it

BENABDI Mouloud
Association Ecologique Marine Barbarous
Quai d’Alexandrie Port d’Oran Algérie 31000 Oran ALGERIA
Tel : +213 676820490
Email: contact@barbarous.org

BENMESSAOUD Rimel
Institut National d’agronomie de Tunisie (INAT)
App Ben Mahmoud, Bloc 25, Log 338, Cité Olympique 2020 Tunis TUNISIA
Tel : +216 98520051
Email: Benmessaoud_rimel@yahoo.fr

BOUHADJA Mohamed El Amine
CNRDPA
208 Rue 17 Septembre 1956- Ouled Yaich 09100 Blida ALGERIA
Tel : (+213)671 80 80 52
Email: Bouhadja.amine@gmail.com
CORRIAS Valentina
Institute for Costal Marine Environment (IAMC-CNR)
Detached Unit of Messina - Spianata S. Ranieri, 86
98122 Messina
ITALY
Tel : +39 392.0218294
Email : valentina.corrias@iamc.cnr.it

DE LORENZI Tommaso
DelTa association
Località Giasbana 8
34070 San Floriano del Collio
ITALY
Tel: +393336150121
Email : tdelorenzi@gmail.com

DIRYAQ Salih
EGA Libya (Environment General Authority – Libya)
00218 Sirte
LIBYA
Tel : +218 913709318
Email : saldery@gmail.com

ELMAKI Elagil
Director of Nature Conservation Department (EGA)
LIBYA
Email: makeeaglee@yahoo.com

FOUAD Mahmoud
Environics, Environment and Development Advisors
6 Dokki Street, Giza
12311 Cairo
EGYPT
Tel: +201221177671
Email : Mahmoud_ncs@yahoo.com

GHALAB Ahmed
Egyptian Environmental Affairs Agency - Red Sea Protectorates
Red Sea Protectorates office - Hurghada –red sea governorate - Cairo – Egypt
Hurghada
EGYPT
Tel : +201027601744
Email : Ahmedghallab968@yahoo.com
GIARDINA Fabio
Marine Protected Area Pelagie Islands
Via Cameroni
92010 Lampedusa
ITALY
Tel: +393462104314
Email: fabiogiardina2@gmail.com

GIGOU Alexandra
Chargée de mission espèces, habitats et écosystèmes marins
Agence française pour la biodiversité
Parc naturel marin du golfe du Lion
2 impasse Charlemagne
66 700 Argelès-sur-MER
FRANCE
Tel: +33 4 68 68 55 90 / +33 6 74 52 01 91
Email: alexandra.gigou@afbiodiversite.fr

GOL’DIN Pavel
Cand. Sci., Assoc. Prof., Leading Researcher
Department of Evolutionary Morphology,
Schmalhausen Institute of Zoology of NAS of Ukraine
15 Bogdan Khmelyntskyi Street
Kyiv - 30, UKRAINE 01030
Tel.: +380 44 2343093
Email: pavelgoldin412@gmail.com

GURIELIDZE Zurab
Ilia State University
3/5 Cholokashvili Ave
0162 Tbilisi
GEORGIA
Tel: +995 599 56 80 31
Email: zurab_gurielidze@iliauni.edu.ge

JOVICEVIC Mihailo
University of Montenegro
Sv.Petra Cetinjskog 73
81000 Podgorica
MONTENEGRO
Tel: +382 69 138181
Email: mihajov@gmail.com

KOPALIANI Natia
Ilia State University
3/5 Cholokashvili Ave
0162 Tbilisi
GEORGIA
Tel: +995 599 55 29 94
Email: natia_kopaliani@iliauni.edu.ge

LOUDRHIRI Abdelali
Département de la Pêche Maritime
BP 476, Haut Agdal, Rabat
10080 Rabat
MOROCCO
Tel : +212 537688277
Email : loudrhiri@mpm.gov.ma

MAZOVSKA Svitlana
Member of the Scientific Advisory Council on Marine Mammal Protection under the Ministry of Ecology and Natural Resources of Ukraine
Odessa, Ukraine
Tel. +38(095)94-09-833, +38(098)887-57-67
Email : lana.mazovskaya@ukr.net

MICHAELIDES Savvas
Department of Fisheries & Marine Research
101 Vithleem Str - 2033 Nicosia
CYPRUS
Tel : +357.22807851
Email : smichaelides@dfmr.moa.gov.cy

PAIU Romulus-Marian
Mare Nostrum NGO
900613 Constanta
Romania
Tel: +40720258785
Email: marian_paiu@marenostrum.ro

PETROS Stavrou
Department of Fisheries & Marine Research
101 Vithleem Str - 2033 Nicosia
CYPRUS
Tel : +357.22807855
Email : pstavrou@dfmr.moa.gov.cy

POPOV Dimitar
Green Balkans NGO
1 Skopie str., office 10
4013 Plovdiv
BULGARIA
POPOVIĆ Jelena
University of Montenegro
Hercegovačka 97
81000 Podgorica
MONTENEGRO
Tel: +382 68 048 388
Email: popovic.jelena4@gmail.com

REDONDO RODRÍGUEZ Marisol
Técnico de Conservación
Centro Montes y Aserradero de Valsain
C/ Primera, 11- 40109 Valsaín SEGOVIA
Tel: +963 921470037
Email: sredondo@oapn.es

SAIED Almokhtar
Head of Marine and wildlife section
Nature Conservation Dept
Environment General Authority
P.O.Box 13793 Tripoli/LIBYA
Tel: 00218 91 455 96 15
Email: mok405@yahoo.com

SELMANI Rabah
CNRDPA
11 bvd colonel Amirouche
420037 Bouismail
ALGERIA
Tel:
Email: rabah_selmani@hotmail.fr

TAI Imane
Institut National de Recherche Halieutique
2, BV Sidi Abderrahmane
20180 Casablanca
MOROCCO
Tel: +212 672827416
Email: taiimane.it@gmail.com

TONAY Arda M.
Istanbul University, Faculty of Aquatic Sciences
Ordu Cad. No:8 Laleli Fatih
34480 Istanbul
TURKEY
Tel: +905359402222
Email: atonay@istanbul.edu.tr

ZELEZNIK Jure
Ulica Simona Jenka 13c, Domzale
SLOVENIA
Tel: +386 68 663 667
Email: zeleznik.jure14@gmail.com
LEBANESE EXPERTS

ABBOUD ABI-SAAB Marie
ASSAF Laury
AWAD Viviane
FAKHRY Milad
GHANEM Abir
GHSOUB Myriam
HASSOUN Abed El Rahman
JABER Houssein
JEMAA Sharif
KHALAF Gaby
LAHOUD Imad
LTEIF Myriam
MAHFOUZ Celine
MINA Roula
MOUAWAD Rita
OUBA Anthony
SAMAHA Ziad
TAREK Elie

TRAINERS AND ACCOBAMS PERMANENT SECRETARIAT

DAVID Léa
Task Manager « Aires Protégées pour les cétacés » du Comité Scientifique de l’ACCOBAMS
EcoOcéan Institut
18 Rue des Hospices
34090 Montpellier, France
Tel: +33 4 67 84 28 87
E-mail: lea.david2@wanadoo.fr

GAUFFIER Pauline
Urbanización La Almadraba puerta 140
Calle Río Segura, 89
30385 Playa Honda, Cartagena
Murcia - Spain
Tel: +34 658 199 045
E-mail: paulinegauffier@hotmail.fr

Dhia GUEZGUEZ
Data Management & Computing Officer
Specially Protected Areas Regional Activity Centre (SPA/RAC)
Boulevard du Leader Yasser Arafat - B.P. 337
1080 Tunis Cedex - Tunisia
Tel: +216 71 206 485 / +216 97 392 011
E-mail: dhia.guezguez@spa-rac.org

MONTIGLIO Camille
ACCObAMS Permanent Secretariat
Communication Officer
Les Terrasses de Fontvieille
Jardin de l’UNESCO
MC-98000 MONACO
Tel: +377 98 98 20 78
E-mail: cmontiglio@accobams.net

MOULINS Aurélie
CIMA Research Foundation
Campus Savona, Via Magliotto 2
17100 Savona - ITALY
E-mail: aurelie.moulins@cimafoundation.org

PANIGADA Simone
Chair of the ACCOBAMS Scientific Committee
Tethys Research Institute
Viale G.B. Gadio 2
20 121 Milan – ITALY
Tel: (+39) 02 7200 1947 – (+39) 02 6694 114
E-mail: panigada69@gmail.com

ROUL Marine
EcoOcéan Institut
18 Rue des Hospices
34090 Montpellier, FRANCE
Tel: +33 4 67 84 28 87
E-mail: roul.marine@gmail.com

SALIVAS Maylis
ACCObAMS Permanent Secretariat
Programme Officer
Les Terrasses de Fontvieille
Jardin de l’UNESCO
MC-98000 MONACO
Tel: +377 98 98 42 75
E-mail: msalivas@accobams.net
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday 1 October 2018</td>
<td>9:00 AM</td>
<td>Official welcome statements and introduction to the training</td>
<td>CNRS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACCOBAMS</td>
<td>ACCOBAMS</td>
</tr>
<tr>
<td></td>
<td>1:00 PM</td>
<td>1/ NETCCOBAMS – Strengthen collaboration between all ACCOBAMS experts</td>
<td>Maylis SALIVAS, Léa DAVID</td>
</tr>
<tr>
<td></td>
<td>1:30 PM</td>
<td>2/ Reporting quality assured data related to the EcAp common indicators on marine mammals: The SPA/RAC Mediterranean Platform on Biodiversity</td>
<td>SPA/RAC representative</td>
</tr>
<tr>
<td></td>
<td>2:30 PM</td>
<td>3/ National and regional databases on strandings</td>
<td>Maylis SALIVAS</td>
</tr>
<tr>
<td></td>
<td>3:30 PM</td>
<td>4/ CCH and IMMAs: for a better consideration of cetaceans in MPAs - examples of practices implemented and needs -</td>
<td>Simone PANIGIGADA, Alexandra GIGOU, Fabrizio ATZORI, Pep AMENGUAL</td>
</tr>
<tr>
<td>Tuesday 2 October 2018</td>
<td>9:00 AM</td>
<td>5/ Photo-Id – from raw data to a photo-ID catalog</td>
<td>Léa DAVID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1 Introduction to photo identification techniques</td>
<td>Marine ROUL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.2 Example of data catalogue and matrix on Bottlenose Dolphin</td>
<td>Aurélie MOULINS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.3 Example of data catalogue and matrix on Risso’s dolphin</td>
<td>Simone PANIGIGADA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.4 Example of data catalogue and matrix on fin whale</td>
<td>Marine ROUL, Pauline GAUFFIER, Aurélie MOULINS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.5 Practical exercise from raw data (data provided by participants or provided by trainers)</td>
<td>Marine ROUL, Pauline GAUFFIER, Aurélie MOULINS</td>
</tr>
<tr>
<td>Wednesday 3 October 2018</td>
<td>9:00 AM</td>
<td>6/ A tool needed for data recovery: GIS – from raw GPS data to maps of effort and observations (sea trip and data processing)</td>
<td>Pauline GAUFFIER, Léa DAVID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1 : Sea trip (morning)</td>
<td>Aurélie MOULINS, Marine ROUL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to GIS techniques (afternoon)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2 : Introduction to GIS techniques (morning)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical exercise with data provided by trainers (afternoon)</td>
<td></td>
</tr>
<tr>
<td>Thursday 4 October 2018</td>
<td>9:00 AM</td>
<td>6/ A tool needed for data recovery: GIS – from raw GPS data to maps of effort and observations (sea trip and data processing)</td>
<td>Pauline GAUFFIER, Léa DAVID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1 : Practical exercise with data provided by trainers (morning)</td>
<td>Aurélie MOULINS, Marine ROUL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical exercise with data from the sea trip (afternoon)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2 : Sea trip (morning)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical exercise with data from the sea trip (afternoon)</td>
<td></td>
</tr>
</tbody>
</table>

ANNEX 2 - PROGRAMME
<table>
<thead>
<tr>
<th>Friday 5 October 2018</th>
</tr>
</thead>
</table>
| **7/ Valorization of available data in the ACCOBAMS area - transfer of expertise and of know-how from experts to other experts** | Aurélie MOULINS
Marine ROUL
Pauline GAUFFIER
Léa DAVID |
| **8/ Closure of the training** | Milad FAKHRI
Gaby KHALAF
Maylis SALIVAS |
QGIS EXERCISE

ACCOBAMS training on photo-identification and databases
Element of the exercise

Data
- Files (.txt) with GPS tracks
- Road sheets (.pdf) with the indications of the exits
- Shapefile (.shp) and raster (.tif) file for mapping (we are not responsible for the boundaries and territorial boundaries of the files)

Software
- Notepad to open .txt files
- Calculation software: Excel, free office, Open Office ... to create the database
- Qgis for SIG

Instructions

GPS data processing

Create a database from the GPS file, see the corresponding part in the guide.

To complete the database

In this exercise are considered out of effort periods where:
- There is no effort of observation
- There is interruption of the transect because of cetaceans
- Weather conditions are poor: Wind and Sea above Beaufort 4, Visibility = fog (brouillard in french).
- Transect conditions are not respected: speed below 7 km / h

THT column code:
- In effort: T
- In cetacean sighting: OBS
- No effort: HT
- Bad weather conditions: HTM
- Bad speed: HTV

ID transect, the transect identifier will be composed of the name of the mission, the year and the transect number: GEDGeM_2014_001, GEDGeM_2014_002....

It is possible to automate the numbering of transects if the columns "date" and "THT" are well filled as well as the column "ID" (See the formulas in the Excel file).

Starting Qgis

After having installed QGIS beforehand, it is necessary to install additional modules that will allow certain operations to be carried out. (See the guide).

Open the shapefile and raster layers under QGIS (See the guide).

Using Qgis

Import the database under Qgis and transform it into a shapefile.
Create transects from GPS points and calculate their length.
Creation of a shapefile for CCH (creation of a shape layer, creation of an attribute table, creation of polygon corresponding to the CCH) for your geographical area.)
Data analysis
From extraction to SIG
1 GPS data extraction ... 18
2 GPS data processing ... 19
 2.1 Geographical position .. 20
 2.2 Date and Time ... 22
 2.3 Leg Speed and Leg Course ... 22
3 Database .. 23
4 Starting Qgis .. 24
 4.1 Creating a project ... 24
 4.2 Installing modules / expansion ... 24
 4.3 Open a shapefile ... 24
 4.4 Open a raster file ... 26
5 Switch from Excel to Qgis ... 26
 5.1 Import the data under Qgis ... 26
 5.2 Points to lines ... 28
 5.2.1 Transects creations ... 28
 5.2.2 Calculating the length of the transects .. 29
6 General tools of Qgis ... 32
 6.1 Select and deselect entities ... 32
 6.2 Measure with the rule tool .. 32
7 Create a layer (CCH) ... 33
8 Create an attribute table ... 34
9 Create polygons .. 35
 9.1 Define the option of snapping .. 35
 9.2 Add entities ... 35
 9.3 Modify a node/vertex : node tool ... 38
 9.4 List of the tools of the editing mode ... 38
10 Create a map .. 39
GPS data extraction
Software : MapSource

Manual :

➢ Start MapSource
➢ Connect the GPS to the computer via the USB cable.
➢ Start GPS
➢ In order to transfer the GPS data to the computer, the GPS must pick up a signal otherwise the computer does not detect it
➢ Click on the "Receive device" icon: if the GPS is detected, the software finds it automatically.
➢ Selected Waypoints and Tracks for downloaded GPS tracks then click on “Receive”

The tracks appear

To record tracks :

➢ « Fichier »
➢ « Enregistrer sous »
➢ Format of the record is ".gdb" which is the format of MapSource (to open later traces in the software) or ".txt" for data processing.
GPS data processing
Software: Notepad and Excel

Open the file containing the GPS track (.txt)

Select all (ctrl+A) and to copy (ctrl+C)

Open Excel and then paste (ctrl+V)

Delete empty lines and unnecessary lines: only the line containing the column headers and the lines of the GPS points. Warning unnecessary lines are automatically created at the beginning of tracks.
The file must be like this:

Column headings:

- Header: corresponds to the GPS recording mode
- Position: GPS coordinates
- Time: date and time
- Altitude: theoretical not always very reliable...
- Depth and Temperature: always empty unless a probe is connected
- Leg Length: length between the GPS point and the previous GPS point in meter
- Leg Time: time between 2 points
- Leg Speed: the speed between 2 points in kilometers per hour (kph)
- Leg Course: the cap between 2 points

In this state the data cannot be used in a database, it is necessary to:

- Format the position and convert it to decimal degrees to be recognized by QGis,
- Separate the date and time
- Remove the text from the "Leg" columns

Geographical position

Separation of latitude and longitude:

- Insert 4 new columns after column "B"
- Select column "B"
- In the "Data" tab, click on the "Convert" icon
- Select the "Fixed width" option then click on next
- We must now position the separators so as to have 4 columns:
 - In the 1st, there will be the N
 - In the 2nd, the latitude
 - In the 3rd, the E
 - And in the 4th the longitude
- Then click on Finish
We must now delete the "spaces" present in the coordinates:

- Select columns "C" and "D"
- In the "Home" tab, click on the "Search and select" icon
- Click on "Replace": in “Search” put in "space" and don’t put anything in “Replace by"
- Click on "Replace all", result obtained:

Conversion to decimal degrees:
➢ Insert two columns one after C and the other after E
➢ Open latitude and longitude conversion Excel file
➢ Copy / Paste latitudes in the conversion file and stretch the formula to calculate all the points.
➢ Select the values in the decimal degrees column and copy
➢ Paste into the working file, 2 things:
 o Be careful not to shift positions
 o Make a special "Value" collage otherwise Excel will paste the formula.
➢ Do the same for the longitude

Result:

![Excel spreadsheet image]

Date and Time

Separation of date and time:

➢ Insert one column after H
➢ Select column "H"
➢ In the "Data" tab, click on the "Convert" icon
➢ Select the "Delimiter" option then click on next
➢ For separator, tick space and then click on finish

Leg Speed and Leg Course

Delete text characters to keep only the numbers:

➢ Select the columns
➢ In the "Home" tab, click on Search and replace, then replace
➢ For speed put "kph" in search and nothing in replace and click on replace all
➢ For cap put "true" in search and nothing in replace and click on replace all

The information is now transferable into the database.
Database

The organization depends on its use, some element remains nevertheless obligatory and certain more practical to be found.

Metadata:

➢ Mission: name of the mission
➢ Organization: Forwarder / Executor of the Mission
➢ Author: Referents on the mission
➢ Name of the boat

GPS data:

➢ Speed
➢ Cap
➢ Latitude
➢ Longitude
➢ Date
➢ Time

Transect data:

➢ Transect ID: final transect code for GIS
➢ Transect number: transect number
➢ THT: To indicate if on the point we are in transect effort
➢ Comment: to specify elements

Meteorological data:

➢ Wind force
➢ Wind direction
➢ Force of the sea
➢ Sky
➢ Visibility

Other columns can be added according to the information collected during the mission.

Note: Qgis doesn’t read characters with accents, so do a search and replace them with the same letter without accents and don’t put semicolon in the base.

➢ Save the database in .cvs format (separator: semicolon).
➢ Start Qgis, open a new project
➢ To treat the file under Qgis, open the .csv file, with the command "Add a delimited text layer".
Starting Qgis

Creating a project

Start Qgis

Start a new project by clicking on the icon « New »

To save the project (which will contain all the layers of the exercise) click on the "File" menu, "save as", give it a name and click on save.

Installing modules / expansion

To do this click on the "Extension" menu and install / Manage extensions

Then you have to type the name (if you know it) or a keyword to find the extension and click on install.

Here is a non exhaustive list of extension and their function:

- **Point2One** : Transform points online or polygon (NECESSARY FOR EXERCISE)
- **Statist** : Calculate and display statistics for a field
- **GroupStat** : Statistics and analysis for vector layer data
- **Vérificateur de topologie** : Lets you find the topology errors present in a vector layer
- **Outils GPS** : Tools to load and import GPS data (only works with certain GPS)
- **OpenLayers Plugin** : Allows you to display Googlemap, Bing Maps, OpenStreetMap background maps ...
- **Layers Combinaisons** : Allows you to save an image of the layers, it is especially used if several cards must be layout at the same time.
- **Digitizing Tools** : different tools useful during digitizing sessions

Open a shapefile

To open a shapefile (.shp, .tab) click on the button
This window opens, leave default check file and system encoding. Click on Browse.

By default Qgis recognizes files in .shp, selected the layer(s) you want to open and click on open (2x).

Change the style / rendering of the layer:

Once the layers are loaded, they appear in the "layers" insert to modify the rendering of a layer right click on the layer and then on property then in the style tab.

Styles are already pre-download in qgis for the countries layer select the style "land" and click on "OK"
Open a raster file

To open a raster file (.tif) click on the button

This window opens, select the file in .tif then click on open.

In message appears which precises that by default the SCR of the layer was defined by the WGS84. This means that Qgis did not find geo-referencing related to the tif file.

You have to check that the image is in the right place.

Switch from Excel to Qgis

Import the data under Qgis

➢ For open file .csv, click on the button

 ○ **File format**: choose "custom delimiters" and "semicolon".
 ○ **Records**: Nbrs of lines to ignore 0 and check headers in 1st line.
 ○ **Field options**: everything must be unchecked
 ○ **Definition of geometry**: tick point, field X put the longitude and Y fields the latitude
 ○ **Click OK**

➢ Select the reference coordinate system: WGS84 / EPSG: 4326 and click OK
➢ Save the layer in shp format (this allows you to make changes to the layer directly from Qgis):
 o Right click on the layer and save as
 o Give it a new name
 o For the SCR choose a reference in metric for example:
 ▪ In France (RGF93, EPSG: 2154)
 ▪ In Europ (ETRS89 / EPSG:3035)
 ▪ In Lebanon (UTM36 / EPSG :32636)
 o Check the box: Add files to map and click OK
Points to lines

Transects creations
To connect the points and visualize the transects, use the extension « Points2One ».

- Click on the icon « P² »
- Select shp layer with GPS point
- Choose "create lines"
- Group features by "THT" / "ID-transect"
- Choose a name and location for the output .shp, for example 20171011_transect_ligne_PNMGL
- Check "Add results to canvas »

Once formatted, the resulting layer appears as follows:
Calculating the length of the transects

To calculate the length of transects, you must either:

- The layer has a projected SCR (that is to say that the units are not degrees but meters / miles / feet..., example: for the meters in Lambert 93)
- The project is configured in units projected (But it will give approximate results to use when last resorts) for that go into the "Project" menu then click on the property of the project. In the general tab, section "measurements" check that the units of measurement are not degrees. Then click on « ok »

For the exercie choose the meters

- Select the transects layer
- Switch to edit mode by clicking on the pencil icon
- Then right-click on the layer, to open the attribute table.
Open the field calculator (calculatrice de champ).

In the field calculator:
- "Create a new field" and name it, for example "Distance_km";
- Choose "decimal number"; to have digits after the decimal place 1, 2 or 3 in the corresponding box;
- In "geometry", choose "$length" by double-clicking → the formula appears in the window on the left.
- Divide by 1000 to get kilometers.
➢ The "Distance" column with values per transect appears in the attribute table.
General tools of Qgis

Select and deselect entities
The QGIS toolbar provides several feature selection tools. Select the layer in which you want to select an element.

To select one or more entities, click and choose your tool.

To deselect all entities, click.

Measure with the rule tool
Click on the icon and select the tool you want to use.

The tool allows you to place points on the map. The length of each segment is displayed in the measurement window as well as the total cumulative length.

To stop the measurements, right click. Note that you can interactively change the units of measures in the Measures dialog box. They replace the Preferred Action Units of the options.
Create a layer (CCH)
in order to create a new layer, please click on the following button:

➢ Select « New Shapefile Layer »
➢ For type, select: Polygon
➢ Keep all the other settings / and « Ok ».

Then, give a name to the layer (CHH_nameofcountry), BE CARREFUL: note where you register it!!!!!!
Create an attribute table

In order to modify the attribute table, you shall be in « toggle editing » (click on the following button)

Open the attribute table of the CCH layer

To create a new field, click on the button « New Field »

The name of the first field of the attribute table is « Threat »,
The type is text
The length is 80 characters

You will create 8 fields with the following characteristics:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat</td>
<td>Text</td>
<td>80</td>
<td>Direct threat: By-catch, Ship strike, Harassment, Impulsive noise, Depredation, etc.</td>
</tr>
<tr>
<td>Species</td>
<td>Text</td>
<td>80</td>
<td>Initial of the relevant species (Tt, Sc, Bp, Pm,...)</td>
</tr>
<tr>
<td>Area</td>
<td>Text</td>
<td>80</td>
<td>Name of the relevant area</td>
</tr>
<tr>
<td>Intensity</td>
<td>Text</td>
<td>80</td>
<td>Intensity of the threat: Important, medium, low, potential</td>
</tr>
<tr>
<td>Season</td>
<td>Text</td>
<td>80</td>
<td>Period of the year</td>
</tr>
<tr>
<td>Ref</td>
<td>Text</td>
<td>80</td>
<td>Relevant expert for the CCH</td>
</tr>
<tr>
<td>Country</td>
<td>Text</td>
<td>80</td>
<td>Country</td>
</tr>
<tr>
<td>Comments</td>
<td>Text</td>
<td>200</td>
<td>Details on the threat, for example for bycatch you an precise the relevant fishing gears</td>
</tr>
</tbody>
</table>
Create polygons

1.1 Define the option of snapping

Before being able to edit the node/vertex it is important to select the snapping option (tolerance and searching distance) at values that will ensure editing polygon in an optimal way.

Snapping distance tolerance: is the distance used by QGIS to look for node/vertex that are the nearest of the location of the node/vertex you just create or you are moving, so they can be connected.

IT IS HELPFUL TO OVERLAPP NODE/VERTEX AT EXACTLY THE SAME LOCATION

To do that: menu « Settings » → « snapping option »

In "layer selection » select « Avanced »

➢ In the first column, select the layer CCH and Countries
➢ Concerning the Mode, keep the default option « to vertex and segment »
➢ For column Tolerance, put 10
➢ For unit, put « pixels » for both layers
➢ To avoid intersections, tick the box of the layer Countries (so your node will not be linked to the land and you will avoid creating a CCH on land)

![Options d’accrochage](image)

Add entities

Remember: to create a polygon within the layer CCH, this layer should be in editing mode.
Clic on the icon « add a polygon »

You will see a cross on the map, it is your « mouse ». Clic left to begin to place the first node/vertex of your polygon, and continue to draw the entire polygon.
If your CCH is near the coast, you may not draw this side precisely as with the option « avoid intersection » the polygon will be cut by the layer of Countries and you will get a clean frontier.

To finalise the polygon, click right (wherever you want).

This window appears : fill the columns with the informations needed for each CCH and click on OK.

One polygon means one species and one threat

If you have got several species or threats over the same area (polygon), you can duplicate this shape, as :

- Select the polygon
- Open the attribute table
- Click on the icons copy/paste

After that you just need to modify the information in the table so that in your “pasted” polygon you get the new information on the species, threats, etc.

In order to save the modifications of the CCH layer, click on the “save” icon.
Modify a node/vertex : node tool

If you want to change the polygon shape, you can modify it (your layer should be in editing mode) using the node tool.

Click on the « node tool » icon, and select your entity (polygon) you want to modify. Small red box will appear at each node/vertex, indicating that it is well selected.

➢ Selecting vertices: You can select vertices by clicking on them one at a time, by clicking on an edge to select the vertices at both ends, or by clicking and dragging a rectangle around some vertices. When a vertex is selected, its color changes to blue. To add more vertices to the current selection, hold down the Ctrl key while clicking. Hold down Ctrl when clicking to toggle the selection state of vertices (vertices that are currently unselected will be selected as usual, but also vertices that are already selected will become unselected).

➢ Adding vertices: To add a vertex, simply double click near an edge and a new vertex will appear on the edge near to the cursor. Note that the vertex will appear on the edge, not at the cursor position; therefore, it should be moved if necessary.

➢ Deleting vertices: Select the vertices and click the Delete key. Deleting all the vertices of a feature generates, if compatible with the datasource, a geometryless feature. Note that this doesn’t delete the complete feature, just the geometry part; To delete a complete feature use the Delete Selected tool.

➢ Moving vertices: Select all the vertices you want to move, click on a selected vertex or edge and drag in the direction you wish to move. All the selected vertices will move together. If snapping is enabled, the whole selection can jump to the nearest vertex or line.

List of the tools of the editing mode

The main tools are :

<table>
<thead>
<tr>
<th>Icon</th>
<th>Purpose</th>
<th>Icon</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>✤</td>
<td>Current edits</td>
<td>✤</td>
<td>Toggle editing</td>
</tr>
<tr>
<td>✤</td>
<td>Add Feature: Capture Point</td>
<td>✤</td>
<td>Add Feature: Capture Line</td>
</tr>
<tr>
<td>✤</td>
<td>Add Feature: Capture Polygon</td>
<td>✤</td>
<td>Move Feature</td>
</tr>
<tr>
<td>✤</td>
<td>Add Circular String</td>
<td>✤</td>
<td>Add Circular String By Radius</td>
</tr>
<tr>
<td>✤</td>
<td>Node Tool</td>
<td>✤</td>
<td>Delete Selected</td>
</tr>
<tr>
<td>✤</td>
<td>Cut Features</td>
<td>✤</td>
<td>Copy Features</td>
</tr>
<tr>
<td>✤</td>
<td>Paste Features</td>
<td>✤</td>
<td>Save layer edits</td>
</tr>
</tbody>
</table>

The tools for advanced numerisation are the following :
Create a map
To create a map with Qgis, please open « New Print Composer » : you can click on the following button, or click on the menu « Project »

A window opens: give the name of your map and click on “OK”

Explications of all functionalities:
<table>
<thead>
<tr>
<th>Icon</th>
<th>Purpose</th>
<th>Icon</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Folder]</td>
<td>Save Project</td>
<td>![Folder]</td>
<td>New Composer</td>
</tr>
<tr>
<td>![Folder]</td>
<td>Duplicate Composer</td>
<td>![Folder]</td>
<td>Composer Manager</td>
</tr>
<tr>
<td>![Folder]</td>
<td>Load from template</td>
<td>![Folder]</td>
<td>Save as template</td>
</tr>
<tr>
<td>![Print]</td>
<td>Print or export as PostScript</td>
<td>![Print]</td>
<td>Export to an image format</td>
</tr>
<tr>
<td>![Print]</td>
<td>Export print composition to SVG</td>
<td>![Print]</td>
<td>Export as PDF</td>
</tr>
<tr>
<td>![Refresh]</td>
<td>Revert last change</td>
<td>![Refresh]</td>
<td>Restore last change</td>
</tr>
<tr>
<td>![Zoom]</td>
<td>Zoom to full extent</td>
<td>![Zoom]</td>
<td>Zoom to 100%</td>
</tr>
<tr>
<td>![Zoom]</td>
<td>Zoom in</td>
<td>![Zoom]</td>
<td>Zoom out</td>
</tr>
<tr>
<td>![Refresh]</td>
<td>Refresh View</td>
<td>![Zoom]</td>
<td>Zoom to specific region</td>
</tr>
<tr>
<td>![Select]</td>
<td>Select/Move item in print composition</td>
<td>![Select]</td>
<td>Move content within an item</td>
</tr>
<tr>
<td>![Add Map]</td>
<td>Add new map from QGIS map canvas</td>
<td>![Add Image]</td>
<td>Add image to print composition</td>
</tr>
<tr>
<td>![Add Label]</td>
<td>Add label to print composition</td>
<td>![Add Shape]</td>
<td>Add new legend to print composition</td>
</tr>
<tr>
<td>![Add Scale]</td>
<td>Add scale bar to print composition</td>
<td>![Add Basic Shape]</td>
<td>Add basic shape to print composition</td>
</tr>
<tr>
<td>![Add Arrow]</td>
<td>Add arrow to print composition</td>
<td>![Add Attribute Table]</td>
<td>Add attribute table to print composition</td>
</tr>
<tr>
<td>![Add HTML]</td>
<td>Add an HTML frame</td>
<td>![Add Nodes Shape]</td>
<td>Add nodes shape to print composition</td>
</tr>
<tr>
<td>![Edit]</td>
<td>Edit a nodes shape</td>
<td>![Group]</td>
<td>Ungroup items of print composition</td>
</tr>
</tbody>
</table>

Group items of print composition
Elements of a map:

- The map is created with the button “add new map”
- A title is created with the button “add new label”
- A north arrow is created with the button “add image”
- A legend is created with the button “add new legend”
A scale is created with the button “add new scalebar”